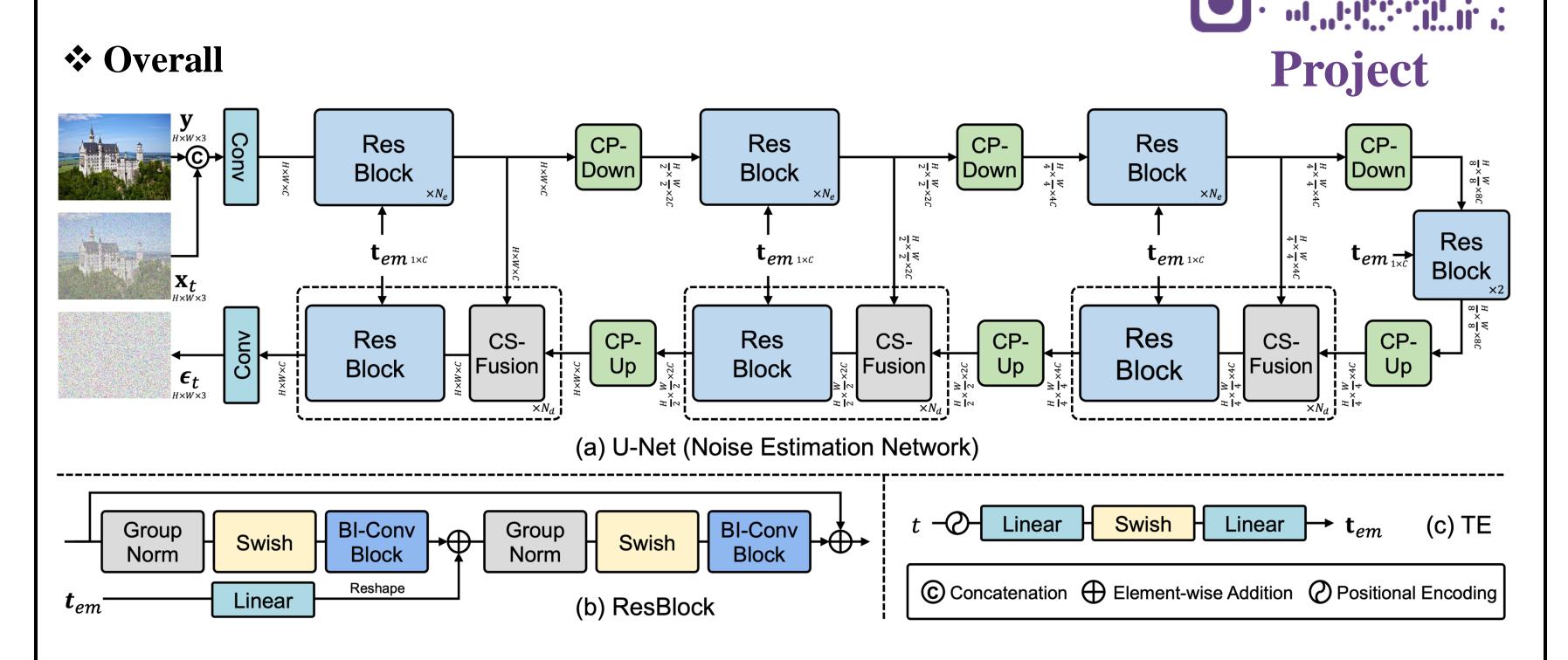


Binarized Diffusion Model for Image Super-Resolution

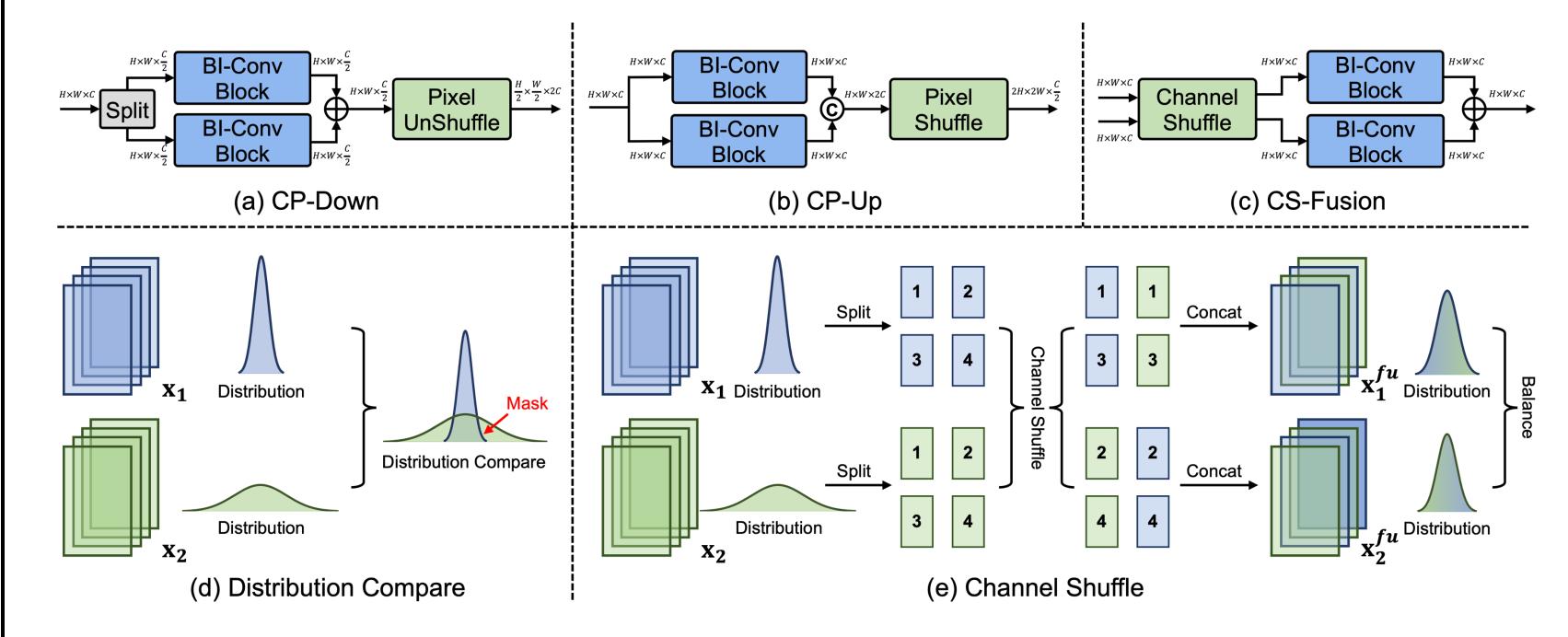
Zheng Chen¹, Haotong Qin^{2*}, Yong Guo³, Xiongfei Su⁴, Xin Yuan⁴, Linghe Kong¹, Yulun Zhang^{1*}

¹Shanghai Jiao Tong University, ²ETH Zürich, ³Max Planck Institute for Informatics, ⁴Westlake University

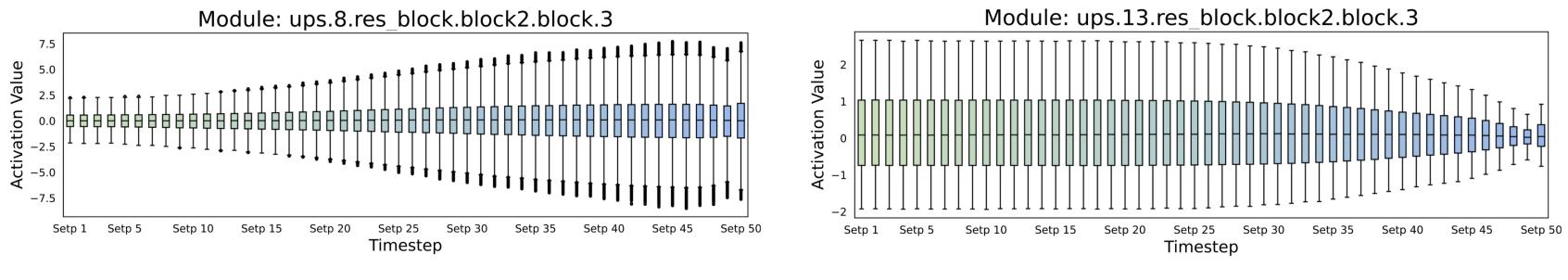
Introduction


Diffusion models (DMs) excel in SR tasks but face high costs. **Binarization** (1-bit quantization) reduces memory and computation. However, the architecture and iterative design of DM limit its application. To tackle this, we propose **BI-DiffSR**, a novel binarized DM for SR.

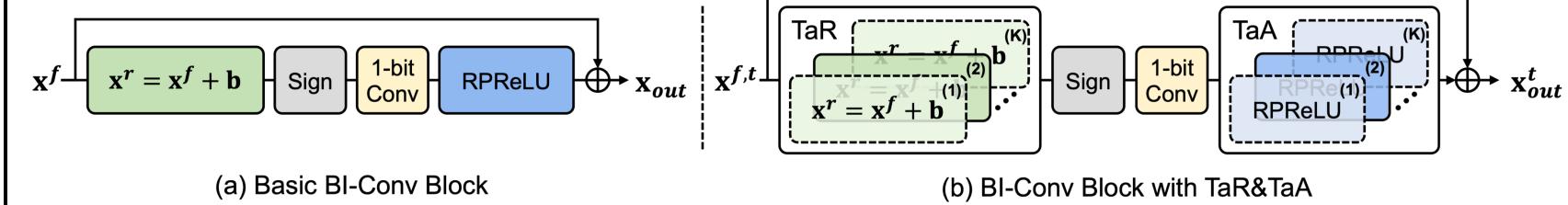
Contribution


- Architecture: Design modules for binarization, including consistent-pixel-downsample (CP-Down) and upsample (CP-Up), and channel-shuffle-fusion (CS-Fusion).
- Activation: Introduce timestep-aware redistribution (TaR) and activation (TaA) to adapt activation distributions by timestep, enhancing binarized modules.
- **Performance:** Outperforms SOTA binarization methods and achieves perceptual quality comparable to full-precision models.

Method


❖ Model Structure

- Challenge I: Dimension Mismatch. Frequent changes in feature resolution cause dimension mismatches, blocking full-precision propagation.
- Challenge II: Fusion Difficulty. Significant activation range differences between the encoder and decoder hinder effective feature fusion in skip connections.



- **CP-Down/Up:** Ensures consistent feature reshaping, allowing identity shortcuts to maintain full-precision information transfer throughout the network effectively.
- **CS-Fusion:** Balances feature distribution by channel shuffle operation, ensuring better distribution matching and promoting more effective feature fusion.

Activation Distribution

• Multi-step iterations in diffusion models change activation distributions, with adjacent timesteps appearing similar and distant ones differing significantly.

• TaR/TaA: Adjusts activations across timesteps, enhancing the binarized module.

Experiments

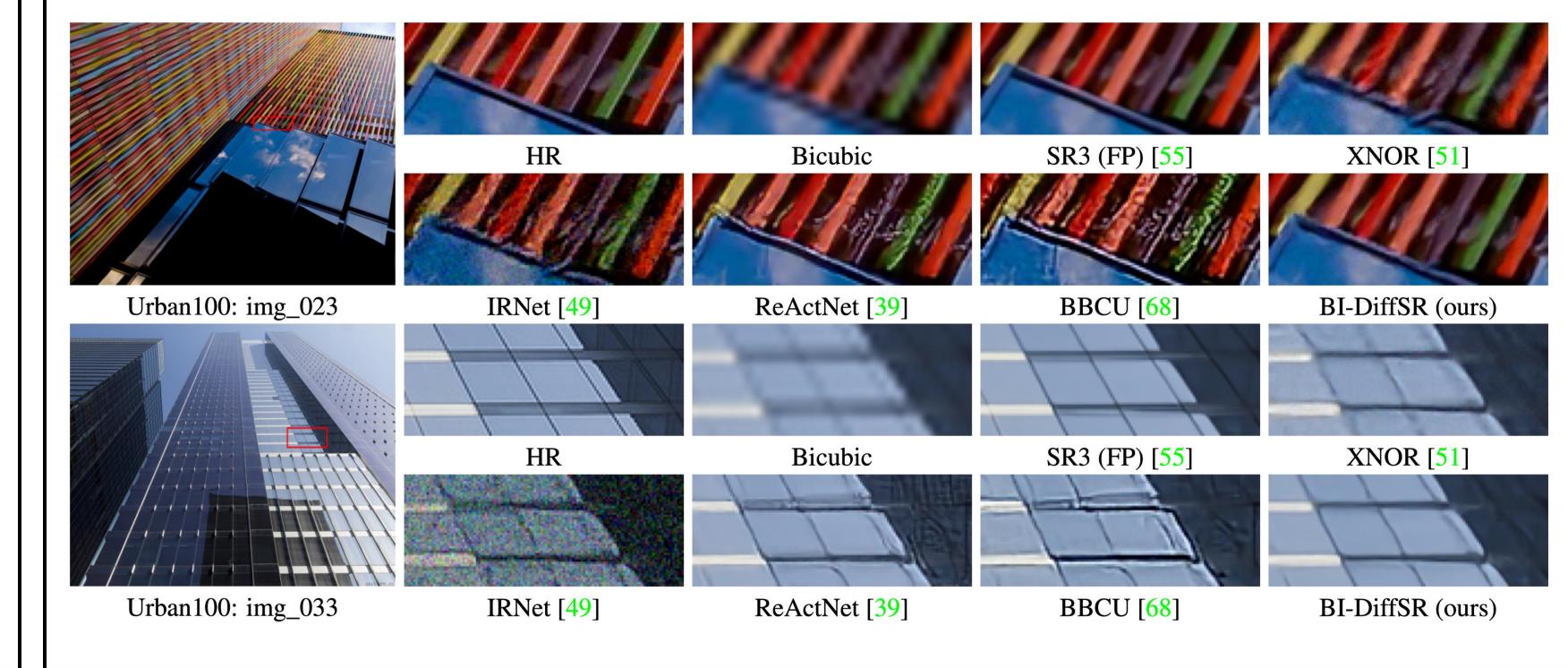
Ablation Study

thod	Baseline	+Identity	+CP-Down&Up	+CS-Fusion	+TaR&TaA	Method	Params (M)	OPs (G)	PSNR (dB)	LPIPS
ams (M)	4.29	4.29	4.29	4.30	4.58	Add	4.10	33.40	18.89	0.1695
s (G)	36.67	36.67	36.67	36.67	36.67	Concat	4.29	36.67	31.08	0.0327
NR (dB)	27.66	29.29	31.08	31.99	32.66	Split	4.30	36.67	29.67	0.0384
IPS	0.0780	0.0658	0.0327	0.0261	0.0200	CS-Fusion	4.30	36.67	31.99	0.0261

(a) Break-down ablation.

(c) Ablation on time aware module (TaR and TaA).

Method	TaR	TaA	Params (M)	Ops (G)	PSNR (dB)	LPIPS	#Pair
w/o			4.30	36.67	31.99	0.0261	Params
In	√		4.37	36.67	29.27	0.0337	OPs (G)
Out		\checkmark	4.51	36.67	29.13	0.0308	PSNR (
All	✓	\checkmark	4.58	36.67	32.66	0.0200	LPIPS


(d) Numbers (#) of bias and RPReLU pair.

(b) Ablation on feature fusion.

Quantitative Results

Method	Scale Param		Ops	Set5			B100			Urban100			Manga109		
Wichiod	Scale	(M)	(G)	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS
Bicubic	×2	N/A	N/A	33.67	0.9303	0.1274	29.55	0.8431	0.2508	26.87	0.8403	0.2064	30.82	0.9349	0.1025
SR3 [55]	$\times 2$	55.41	176.41	36.69	0.9513	0.0310	30.41	0.8683	0.0700	30.29	0.9060	0.0430	35.11	0.9682	0.0161
BNN [19]	×2	4.78	37.93	13.97	0.5210	0.4529	13.73	0.4553	0.5784	12.75	0.4236	0.5575	9.29	0.3035	0.7489
DoReFa [74]	$\times 2$	4.78	37.93	16.43	0.6553	0.2662	16.11	0.5912	0.3972	15.09	0.5495	0.4055	12.35	0.4609	0.5047
XNOR [51]	$\times 2$	4.78	37.93	32.34	0.8661	0.0782	27.94	0.7548	0.1665	27.47	0.8225	0.1153	31.99	0.9428	0.0326
IRNet [49]	$\times 2$	4.78	37.93	32.55	0.9340	0.0446	27.76	0.8199	0.1115	26.34	0.8452	0.0913	23.89	0.7621	0.1820
ReActNet [39]	$\times 2$	4.85	37.93	34.30	0.9271	0.0351	28.36	0.8158	0.0943	27.43	0.8563	0.0731	32.16	0.9441	0.0379
BBCU [68]	$\times 2$	4.82	37.75	34.31	0.9281	0.0393	28.39	0.8202	0.0905	28.05	0.8669	0.0620	32.88	0.9508	0.0272
BI-DiffSR (ours)	×2	4.58	36.67	35.68	0.9414	0.0277	29.73	0.8478	0.0682	28.97	0.8815	0.0522	33.99	0.9601	0.0172

Visual Results

