

Binarized Diffusion Model for Image Super-Resolution

Zheng Chen¹, Haotong Qin^{2*}, Yong Guo³, Xiongfei Su⁴, Xin Yuan⁴, Linghe Kong¹, Yulun Zhang^{1*}

¹Shanghai Jiao Tong University, ²ETH Zürich, ³Max Planck Institute for Informatics, ⁴Westlake University

Introduction

Motivation

- Diffusion models (DMs) excel in SR tasks but face high costs.
- Binarization (1-bit quantization) reduces memory and computation.
- However, the architecture and multi-step iterative design of DM limit its application.
- We propose **BI-DiffSR**, a novel binarized DM for image SR.

^[1] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image super-resolution via iterative refinement. TPAMI, 2022.

^[2] Bin Xia, Yulun Zhang, Yitong Wang, Yapeng Tian, Wenming Yang, Radu Timofte, and Luc Van Gool. Basic binary convolution unit for binarized image restoration network. In ICLR, 2022.

Method

Overall

- The overall structure of the noise estimation network in BI-DiffSR.
- Analysis: UNet struggles with binarization due to dimension mismatch and fusion.

Method

Challenge

- Dimension Mismatch: Resolution changes disrupt full-precision propagation.
- Fusion Difficulty:
 Activation range
 differences hinder
 feature fusion.

Structure

- **CP-Down/Up:** Enables consistent reshaping, preserving full precision.
- **CS-Fusion:** Uses channel shuffle for balanced distribution, enhancing fusion.

Method

Activation

- Analysis: Activation distributions differ in multi-step iterations.
- TaR/TaA: Adjusts activations across timesteps, enhancing the binarized module.

Method	Baseline	+Identity	+CP-Down&Up	+CS-Fusion	+TaR&TaA
Params (M)	4.29	4.29	4.29	4.30	4.58
OPs (G)	36.67	36.67	36.67	36.67	36.67
PSNR (dB)	27.66	29.29	31.08	31.99	32.66
LPIPS	0.0780	0.0658	0.0327	0.0261	0.0200

Method	Params (M)	OPs (G)	PSNR (dB)	LPIPS
Add	4.10	33.40	18.89	0.1695
Concat	4.29	36.67	31.08	0.0327
Split	4.30	36.67	29.67	0.0384
CS-Fusion	4.30	36.67	31.99	0.0261

(a) Break-down ablation.

(b) Ablation on feature fusion.

Ablation

- **Break Down:** Each module improves performance.
- **CS-Fusion:** Effectively fuses different features.
- **Visualization:** Distribution.

Method	TaR	TaA	Params (M)	Ops (G)	PSNR (dB)	LPIPS
w/o In Out All	√ ✓	√ ✓	4.30 4.37 4.51 4.58	36.67 36.67 36.67 36.67	31.99 29.27 29.13 32.66	0.0261 0.0337 0.0308 0.0200

#Pair	1	2	5
Params (M)	4.30	4.37	4.58
OPs (G)	36.67	36.67	36.67
PSNR (dB)	31.99	32.42	32.66
LPIPS	0.0261	0.0229	0.0200

(c) Ablation on time aware module (TaR and TaA).

(d) Numbers (#) of bias and RPReLU pair.

Ablation

- **Timestep-aware (TaA/TaR):** Effective improvements are achieved only when both TaR and TaA are used, with 5 biases and RPReLU providing notable gains.
- **Visualization:** Five learnable biases in TaR.

Method	Scale	Params (M)	Ops (G)	PSNR	Set5 SSIM	LPIPS	PSNR	B100 SSIM	LPIPS	PSNR	Urban10 SSIM	0 LPIPS	PSNR	Manga10 SSIM	9 LPIPS
Bicubic	×2	N/A	N/A	33.67	0.9303	0.1274	29.55	0.8431	0.2508	26.87	0.8403	0.2064	30.82	0.9349	0.1025
SR3 [55]	×2	55.41	176.41	36.69	0.9513	0.0310	30.41	0.8683	0.0700	30.29	0.9060	0.0430	35.11	0.9682	0.0161
BNN [19]	×2	4.78	37.93	13.97	0.5210	0.4529	13.73	0.4553	0.5784	12.75	0.4236	0.5575	9.29	0.3035	0.7489
DoReFa [74]	$\times 2$	4.78	37.93	16.43	0.6553	0.2662	16.11	0.5912	0.3972	15.09	0.5495	0.4055	12.35	0.4609	0.5047
XNOR [51]	$\times 2$	4.78	37.93	32.34	0.8661	0.0782	27.94	0.7548	0.1665	27.47	0.8225	0.1153	31.99	0.9428	0.0326
IRNet [49]	$\times 2$	4.78	37.93	32.55	0.9340	0.0446	27.76	0.8199	0.1115	26.34	0.8452	0.0913	23.89	0.7621	0.1820
ReActNet [39]	$\times 2$	4.85	37.93	34.30	0.9271	0.0351	28.36	0.8158	0.0943	27.43	0.8563	0.0731	32.16	0.9441	0.0379
BBCU [68]	$\times 2$	4.82	37.75	34.31	0.9281	0.0393	28.39	0.8202	0.0905	28.05	0.8669	0.0620	32.88	0.9508	0.0272
BI-DiffSR (ours)	$\times 2$	4.58	36.67	35.68	0.9414	0.0277	29.73	0.8478	0.0682	28.97	0.8815	0.0522	33.99	0.9601	0.0172

Quantitative

- Best Performance: Achieves the best results among recent binarization methods.
- Perceptual Metrics: Comparable to the full-precision SR3 model in LPIPS.

Visual

- Our method restores clearer images with more texture details.
- The gap between BI-DiffSR and full-precision models is small.

Method	Params (M)	OPs (G)	Simulated Time (s)
SR3 [55]	55.41	176.41	55.37
BI-DiffSR	4.58	36.67	13.00

Cost

• Runs much faster than full-precision methods.

Conclusion

Contribution

We propose **BI-DiffSR**, a novel binarized DM for image SR.

- Architecture: Design modules for binarization: CP-Down, CP-Up, CS-Fusion.
- Activation: Introduce TaR and TaA to enhance binarized modules.
- **Performance:** Outperforms SOTA binarization methods.

Poster

Time: Fri 13 Dec
11 a.m. - 2 p.m. PST

Thanks!