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LoRA Rank LPIPS ↓ DISTS ↓ MS-SSIM ↑

8 0.351 0.164 0.839
16 0.343 0.160 0.852
32 0.336 0.158 0.857
64 0.339 0.160 0.849

Table 1: Ablation study on the LoRA rank. A rank of 32
achieves the best trade-off across all metrics.

Implementation Details
In this section, we provide more details on implementation
to complement the main paper. We use HiFiC (Mentzer et al.
2020) as the VAE compression module and Stable Diffusion
2.1 (Rombach et al. 2022) as the one-step diffusion base-
line. We set timestep t as 999. In stage 1, we set kM=1 and
kP=2, and vary the Lagrange multiplier λ∈{0.5, 1, 2, 4, 8}
to obtain compression models with different bitrates (bpp).
In stage 2, we adopt the same kM and kP values as in Stage
1 for the distortion function d(·). In stage 3, we set the align-
ment coefficient α to 30, and λ∈{1, 2, 4, 8, 16} to increase
the rate penalty. For the final fine-tuning stage, we set the
generator loss weight β to 2× 10−1.

More Ablation Studies
Ablation on LoRA Rank. We conduct an ablation study
to determine the optimal LoRA rank for fine-tuning the
UNet in our diffusion model. We experiment with ranks of
8, 16, 32, and 64, with the results summarized in Tab. 1.
We observe a consistent performance improvement across
all metrics as the rank increases from 8 to 32. However, there
is a slight degradation in performance when the rank is in-
creased further. This suggests that a rank of 32 provides suf-
ficient capacity for the model to adapt to the compression
task, while a higher rank may lead to minor overfitting. No-
tably, we also found that full parameter fine-tuning yields
inferior results than any of the LoRA variants, likely due to
optimization instability. Therefore, to achieve the best trade-
off between parameter efficiency and performance, we select
a LoRA rank of 32 for our final model.

Ablation on GANs Hyperparameters. In the final fine-
tuning stage, we apply a GAN-based objective to enhance
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GAN Loss Weight (β) LPIPS ↓ DISTS ↓ MS-SSIM ↑ CLIPIQA ↑

w/o GANs 0.351 0.161 0.840 0.660

0.01 0.341 0.156 0.845 0.729
0.05 0.352 0.154 0.825 0.711
0.1 0.356 0.156 0.822 0.730
0.2 0.346 0.151 0.847 0.735
0.5 0.365 0.159 0.823 0.712

Table 2: Ablation study on the GAN loss weight (β) in the
final stage. A weight of 0.2 achieves the best performance.

realism. We introduce a GAN loss Lg to fine-tune the
SODEC model, Lg = −Eẑ0∼pg [log(D(ẑ0))]. So the over-
all loss for this final fine-tuning stage can be written as:

Lfinetune = d(x, x̂) + λ · r(ŷ, ẑ) + α · Lalign + β · Lg, (1)

and the discriminator model Dϕ is optimized for:

Ld =− Ezreal∼pdata
[log(Dϕ(zreal))]

− Eẑ0∼pg
[log(1−Dϕ(sg(ẑ0)))]. (2)

We conduct an ablation study to investigate the impact of
the GAN loss weight β. The results, summarized in Tab. 2,
compare our model trained without a GAN (β = 0) against
variants with different β values. We observe that introduc-
ing the adversarial objective consistently improves most per-
ceptual metrics (LPIPS, DISTS, CLIPIQA) compared to the
baseline. Performance generally improves as β increases to
0.2, which achieves the best results on DISTS, MS-SSIM,
and CLIPIQA. However, we note a trade-off, as a smaller
weight of β = 0.01 yields the optimal LPIPS score. Increas-
ing the weight further to 0.5 leads to a degradation across
most metrics, suggesting potential training instability. Con-
sidering the strong results on multiple key metrics, we select
β = 0.2 as the optimal setting for our final model.

More Visualizations
Comparison Between With/Without Alignment Loss.
To visually demonstrate the necessity of the alignment loss
during end-to-end fine-tuning, we present a visual compar-
ison in Fig. 1. As the VAE encoder is updated, the latent
representation ŷ undergoes a distributional shift, which can
severely degrade the output of the fixed, fidelity-oriented de-
coder Da. The following figure illustrates the output of the
decoder with and without the proposed Lalign to show how
it counteracts this distortion and preserves fidelity.



Original Without Alignment Loss With Alignment Loss (MSE only)

Figure 1: Visual comparison of the decoder output x̂f with and without the alignment loss. The MSE-only alignment loss
effectively counteracts distortions from the fine-tuned encoder and preserves high-fidelity details.

Reconstruction Quality of Different Training Strategies.
To demonstrate the effectiveness of our proposed training
methodology, we provide a visual comparison (Fig. 2) of
the final reconstruction quality between our model trained
with and without the rate annealing strategy. The strategy
involves manually tuning the Lagrange multiplier λ to en-
sure the final bitrate is close to the original values.

Training Process with different Alignment Loss. We an-
alyze the training dynamics of different alignment loss con-
figurations during stage 3 (joint training with rate anneal-
ing), where we lift the rate penalty and perform a joint opti-
mization. As presented in Fig. 3. The model trained without
any alignment loss converges to the worst LPIPS and MS-
SSIM scores, confirming the necessity of this constraint. A
composite loss of MSE and LPIPS improves performance,
and employing an MSE-only alignment loss yields the best
results, achieving both the lowest LPIPS and the highest
MS-SSIM scores. Furthermore, the training process with the
MSE-only loss exhibits superior stability, as evidenced by
the smoother curves. This is likely because optimizing with
LPIPS becomes unreliable when the latent representation ŷ,
distorted by the low-bitrate constraint, contains insufficient
information for stable convergence.

More Qualitative Results
We provide more visual comparisons in Figs. 4, 5, 6, and
7. Compared to various existing methods, our SODEC re-
constructs results with higher realism and fidelity, further
demonstrating its effectiveness.

Limitations and Future Work
While our one-step design significantly accelerates decoding
compared to multi-step methods, its latency is still higher
than that of non-diffusion-based codecs. For future work, ex-
ploring model distillation could further enhance the perfor-
mance and efficiency of the one-step diffusion model. Mean-
while, investigating more lightweight guidance mechanisms
is another promising direction. In addition, model pruning is
also a direction worth exploring.
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Original Without Rate Annealing With Rate Annealing (Ours)

Figure 2: Qualitative comparison of our rate annealing training strategy. Our proposed strategy (right column) consistently
produces reconstructions with better perceptual quality and fidelity than those without rate annealing (middle column).
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Figure 3: Training dynamics of different alignment loss configurations. The LPIPS (a) and MS-SSIM (c) validation loss curves
are shown. Using an MSE-only alignment loss leads to the most stable training.



Original (bpp) HiFiC (0.0417) MS-ILLM (0.0474)

PerCo (0.0462) DiffEIC (0.0457) SODEC (ours, 0.0415)

Original (bpp) HiFiC (0.0423) MS-ILLM (0.0385)

PerCo (0.0609) DiffEIC (0.0431) SODEC (ours, 0.0375)

Figure 4: Qualitative comparison with state-of-the-art methods on the DIV2K-Val dataset.



Original (bpp) HiFiC (0.0486) MS-ILLM (0.0425)

PerCo (0.0501) DiffEIC (0.0417) SODEC (ours, 0.0401)

Original (bpp) HiFiC (0.0425) MS-ILLM (0.0401)

PerCo (0.0470) DiffEIC (0.0336) SODEC (ours, 0.0334)

Figure 5: Qualitative comparison with state-of-the-art methods on the DIV2K-Val dataset.



Original (bpp) HiFiC (0.0453) MS-ILLM (0.0478)

PerCo (0.0611) DiffEIC (0.0400) SODEC (ours, 0.0391)

Original (bpp) HiFiC (0.0473) MS-ILLM (0.0428)

PerCo (0.0536) DiffEIC (0.0434) SODEC (ours, 0.0400)

Figure 6: Qualitative comparison with state-of-the-art methods on the Kodak dataset.



Original (bpp) HiFiC (0.0484) MS-ILLM (0.0485)

PerCo (0.0558) DiffEIC (0.0387) SODEC (ours, 0.0358)

Original (bpp) HiFiC (0.0442) MS-ILLM (0.0336)

PerCo (0.0472) DiffEIC (0.0364) SODEC (ours, 0.0335)

Figure 7: Qualitative comparison with state-of-the-art methods on the CLIC2020 dataset.


