



Steering One-Step Diffusion Model with Fidelity-Rich Decoder for Fast Image Compression

Zheng Chen^{1*}, Mingde Zhou^{1*}, Jinpei Guo², Jiale Yuan¹, Yifei Ji¹, Yulun Zhang^{1†}

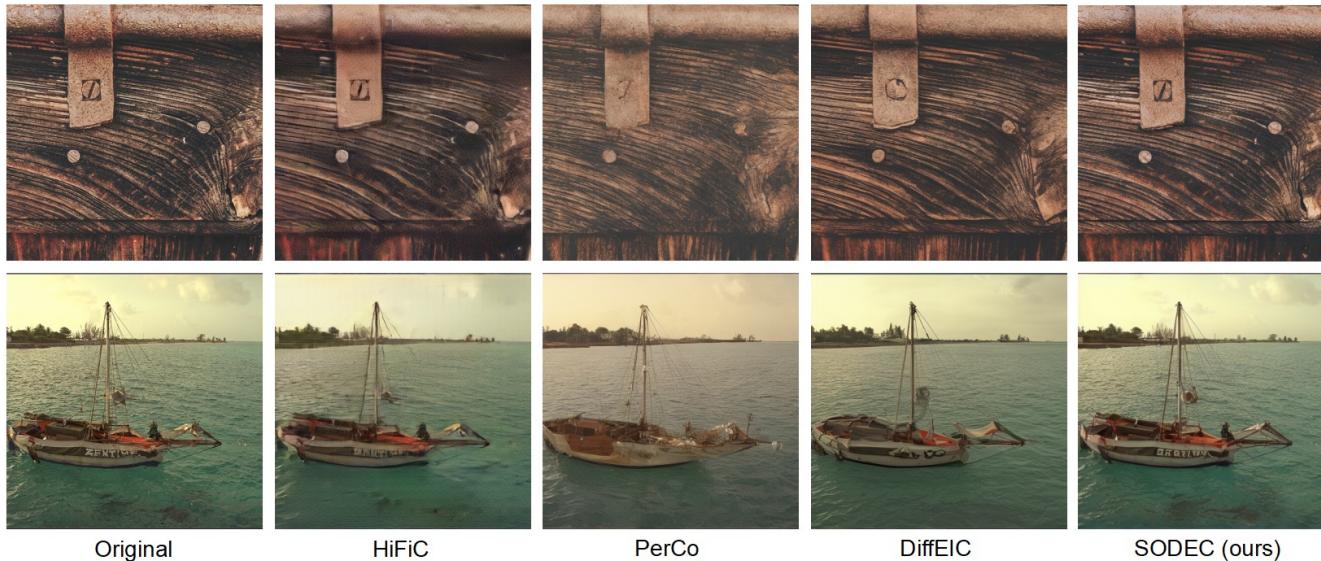
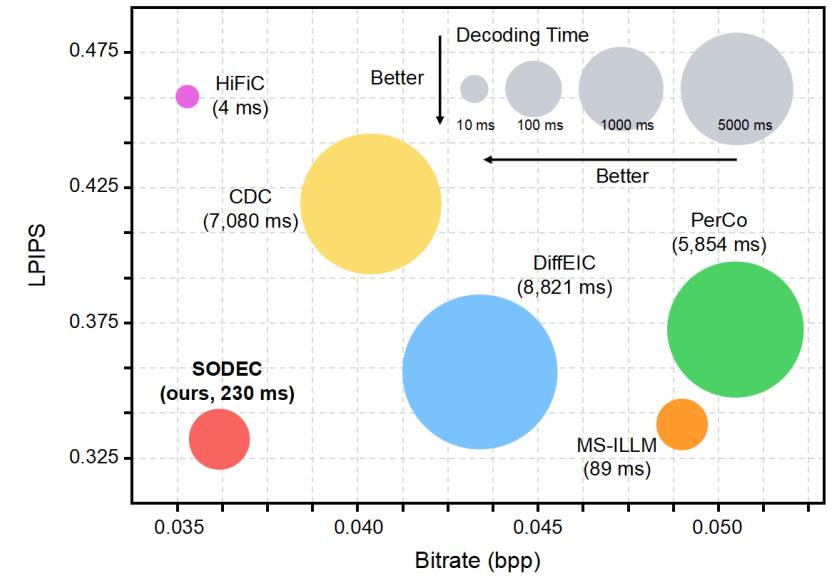
¹Shanghai Jiao Tong University, ²Carnegie Mellon University

**Carnegie
Mellon
University**

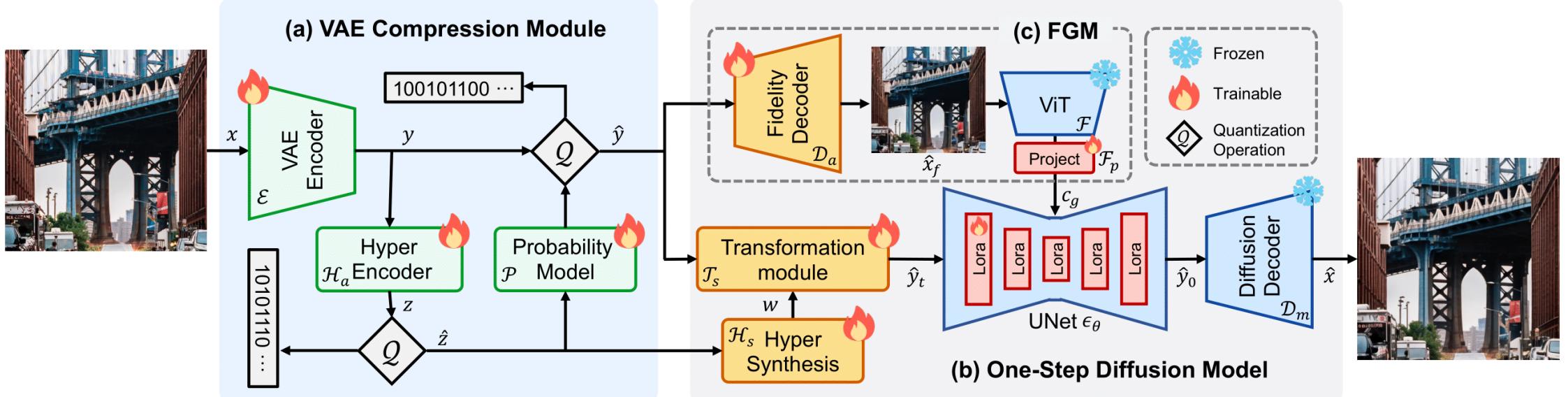
Introduction

Overview

- Diffusion-based image compression excels under ultra-low bitrates.
- **However:**
 - Existing methods rely on multi-step sampling → high decoding latency.
 - Strong generative priors often cause fidelity deviation from the source image.
- **Goal:** Fast decoding without sacrificing fidelity.



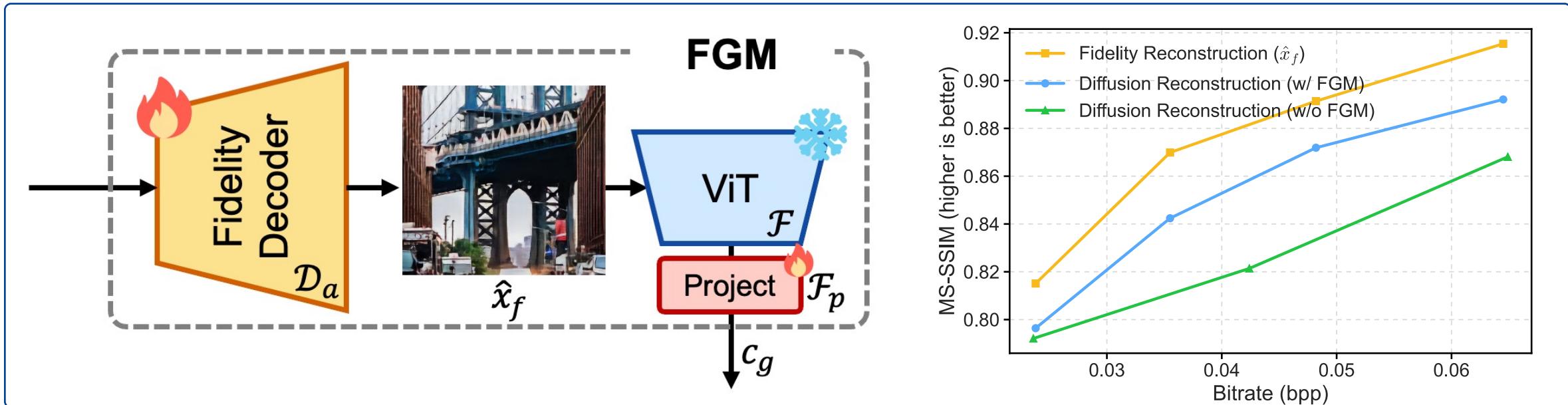
Method



Overview

- VAE-based compression backbone produces informative latent.
- One-step diffusion decoder replaces iterative denoising.

Method



Fidelity Guidance Module

- Generate high-fidelity preliminary reconstruction from VAE decoder.
- Extract visual features as explicit diffusion guidance, and inject guidance via cross-attention.
- Improve content fidelity while preserving perceptual quality.

Experiments

Latency Comparison

- Single-step DM reduces decoding latency by $>20\times$.
- Latency is dominated by one forward pass, no iterative refinement.

Model	Total Time (ms)	Enc. Time (ms) \downarrow	Dec. Time (ms) \downarrow	bpp \downarrow
HiFiC	9.3	5.4	3.9	0.0310
MS-ILLM	9.3	54.5	84.4	0.0395
PerCo	6,242.2	1,540.0	4,702.2	0.0313
DiffEIC	7,827.5	266.4	7,561.1	0.0391
SODEC	232.9	5.0	227.9	0.0314

Guidance Strategy	MS-SSIM \uparrow	LPIPS \downarrow	bpp \downarrow
(i) No Guidance	0.8212	0.3625	0.0424
(ii) Text Prompt Guidance	0.8185	0.3631	0.0412
(iii) Hyperprior Guidance	0.8258	0.3527	0.0385
(iv) Aux. Fidelity Guidance (ours)	0.8481	0.3351	0.0368

FGM

- FGM significantly improves fidelity.
- Explicit visual guidance is more effective.

Experiments

Alignment Loss Config.	MS-SSIM \uparrow	LPIPS \downarrow	bpp \downarrow
(i) No Alignment Loss	0.7490	0.4210	0.0203
(ii) MSE + LPIPS	0.7481	0.3961	0.0199
(iii) Merged into Main Loss	0.7984	0.4023	0.0232
(iv) MSE only (ours)	0.7948	0.3827	0.0227

Alignment Loss

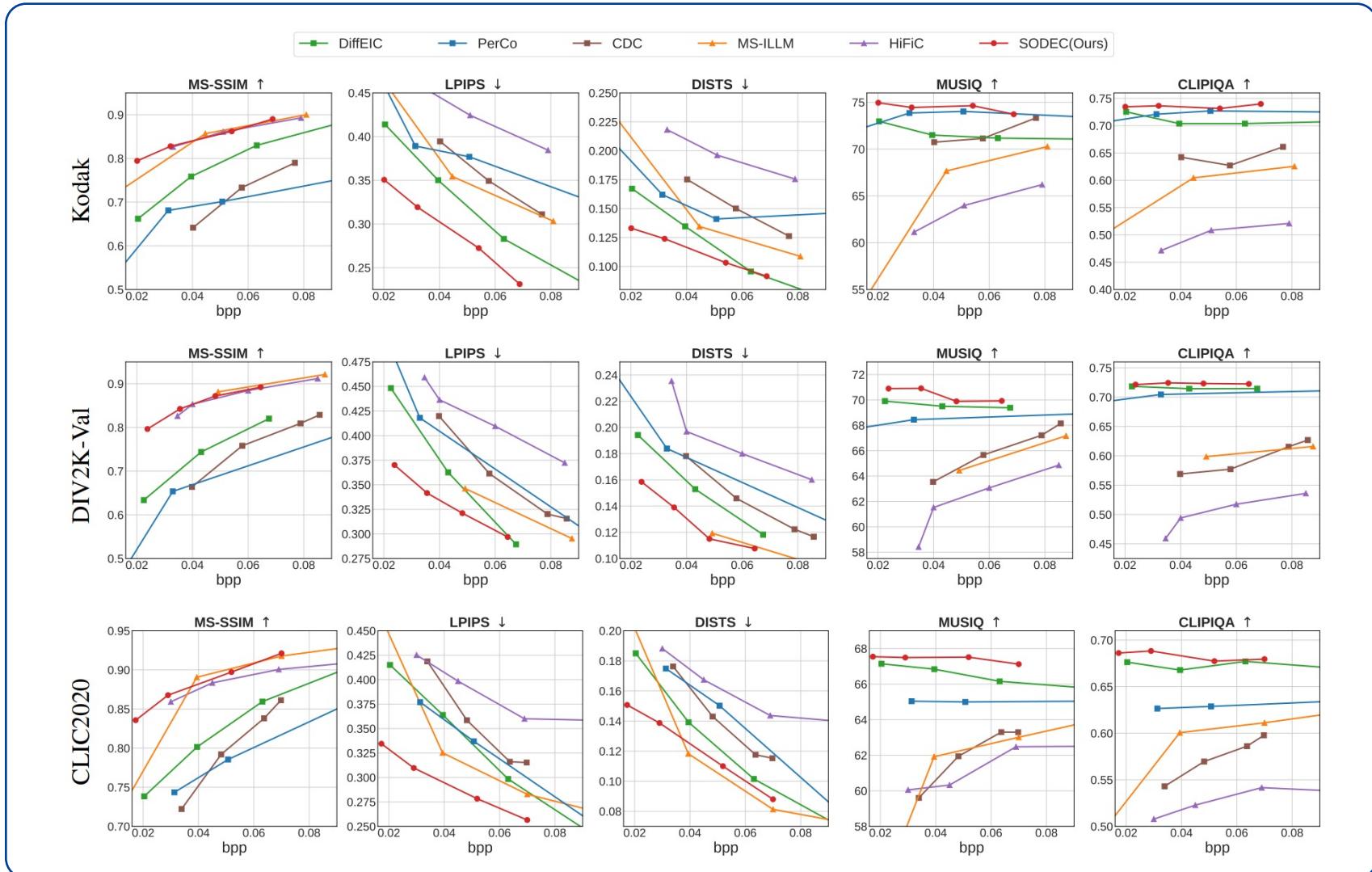
- Alignment loss is necessary to maintain high-fidelity.
- MSE-only achieves the best fidelity–perception balance.

Training Strategy

- Rate annealing outperforms direct joint training at matched bitrates.
- High-to-low bitrate training enables better selection.

Training Strategy	MS-SSIM \uparrow	LPIPS \downarrow	bpp \downarrow
(i) Frozen VAE Module	0.8512	0.3761	0.0695
(ii) Joint Training (Matched bpp)	0.8621	0.3750	0.0678
(iii) Low-to-High bpp Curriculum	0.8643	0.3451	0.0593
(iv) Rate Annealing (ours)	0.8951	0.3113	0.0604

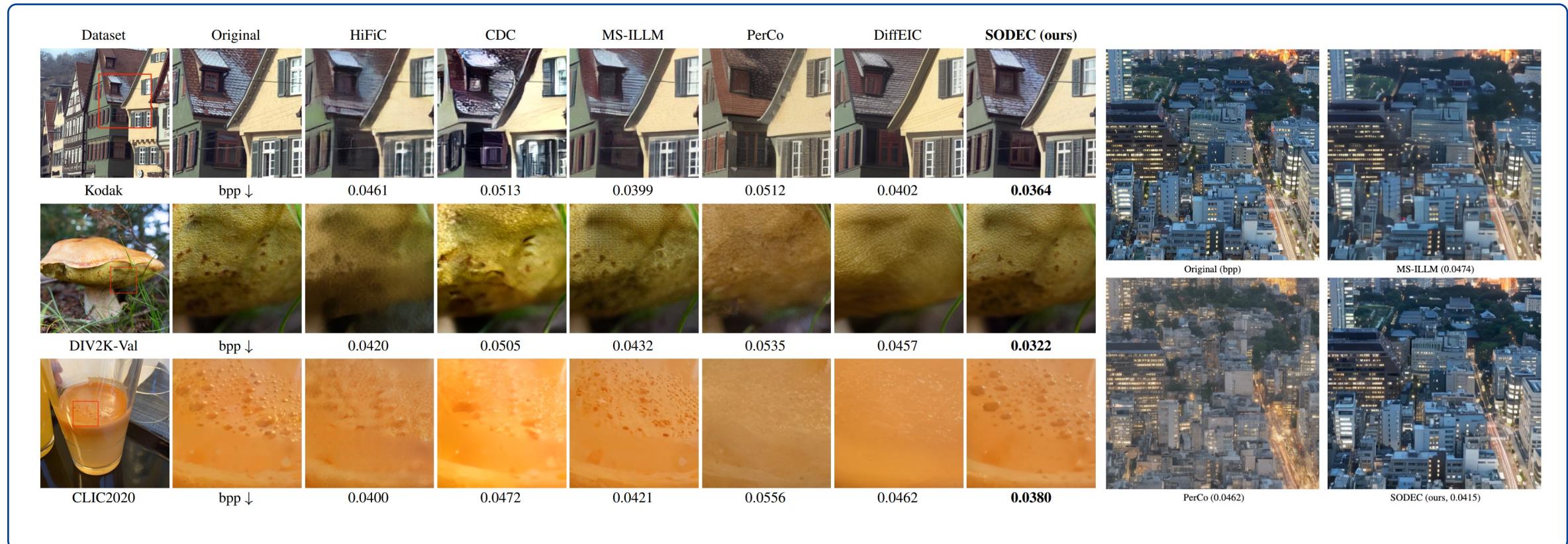
Experiments



Quantitative

- SODEC achieves state-of-the-art performance across different datasets,
- Outperforms multi-step diffusion methods in perceptual metrics
- Over **20×** faster than diffusion-based competitors

Method



Qualitative

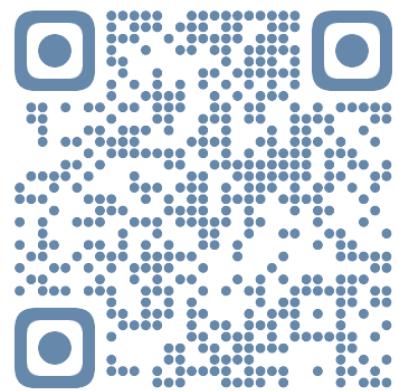
- SODEC reconstructs images with more accurate structures and fewer artifacts.

Conclusion

Contribution

- Propose SODEC, a steered one-step diffusion model for fast image compression.
- Introduce a fidelity-rich decoder to guide diffusion toward faithful reconstruction.
- Design a rate annealing training strategy for optimization at ultra-low bitrates.
- Achieve state-of-the-art performance with $>20\times$ decoding speedup.

Project



Home
Page

Thanks!