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Introduction

* Diffusion-based image compression excels under ultra-low bitrates.

 However:
 Existing methods rely on multi-step sampling — high decoding latency.
 Strong generative priors often cause fidelity deviation from the source image.

* Goal: Fast decoding without sacrificing fidelity.
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Overview ‘

* VAE-based compression backbone produces informative latent.

Decoder

Diffusion
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* One-step diffusion decoder replaces iterative denoising.
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* Generate high-fidelity preliminary reconstruction from VAE decoder.

* Extract visual features as explicit diffusion guidance, and inject guidance via cross-
attention.

* Improve content fidelity while preserving perceptual quality.
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Latency Comparison e \

. Model Total Time (ms) Enc. Time (ms) | Dec. Time (ms)] bppl
* Single-step DM reduces —
decodine lat by >0 % HiFiC 9.3 5.4 3.9 0.0310
ccoding latency by : MS-ILLM 9.3 54.5 84.4 0.0395
* Latency 1s dominated PerCo 6,242.2 1,540.0 4,702.2 0.0313
by one forward pass, no DIffEIC 7,827.5 266.4 7,561.1 0.0391
1iterative refinement. SODEC 232.9 5.0 227.9 0.0314
. O\ J
4 ) FGM A
Guidance Strategy MS-SSIM 71 LPIPS | bpp 4
(i) No Guidance 0.8212 03625  0.0424 * FGM significantly
(ii) Text Prompt Guidance 0.8185 03631  0.0412 improves fidelity.
(iii) Hyperprior Guidance 0.8258 03527  0.0385 - Explicit visual guidance
(iv) Aux. Fidelity Guidance (ours) 0.8481 03351  0.0368 is more effective.
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e 'lg Alignment Loss
Alignment Loss Config. MS-SSIM 1t LPIPS | bpp | . .
* Alignment loss 1s necessary
(1) No Alignment Loss 0.7490 0.4210 0.0203 . . h h f. d 1
(ii) MSE + LPIPS 0.7481 0.3961 0.0199 to maintain high-tiaelity.
(iii) Merged into Main Loss 0.7984 0.4023 0.0232 * MSE-only achieves the best
(iv) MSE only (ours) 0.7948 0.3827 0.0227 fidelity—perception balance.
g J \ 4
Training Strategy N ( )
e Rate annealin g Olltp erforms Training Strategy MS-SSIM T LPIPS | bpp 4
direct J oint training at (i) Frozen VAE Module 0.8512 0.3761 0.0695
matched bitrates (i) Joint Training (Matched bpp) 0.8621 0.3750 0.0678
. (111) Low-to-High bpp Curriculum 0.8643 0.3451 0.0593
[ ) — -—
ngh to IOW bltrate t.ramlng (iv) Rate Annealing (ours) 0.8951 0.3113 0.0604
enables better selection.
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Method

Dataset Original HiFiC CDC MS-ILLM PerCo DiffEIC SODEC (ours)

Kodak bpp | 0.0461 0.0513 0.0399 0.0512 0.0402 0.0364

DIV2K-Val bpp | 0.0420 0.0505 0.0432 0.0535 0.0457 0.0322

Pl

CLIC2020 bpp | 0.0400 0.0472 0.0421 0.0556 0.0462 0.0380 " PerCo (0.0462) ‘ SODEC (ours, 0.0415)
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Qualitative

* SODEC reconstructs images with more accurate structures and fewer artifacts.




Conclusion

Contribution

* Propose SODEC, a steered one-step diffusion model for fast image compression.
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* Introduce a fidelity-rich decoder to guide diffusion toward faithful reconstruction.
* Design a rate annealing training strategy for optimization at ultra-low bitrates.

* Achieve state-of-the-art performance with >20% decoding speedup.
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